The OpenCA manual

..., Michael Bell <loon@openca.org>

January 19, 2001

Contents

I Introduction 7
II OpenCA::DBI and DBIS 11
1 Design of OpenCA::DBI and DBIS 13
1.1 Databasedesign Lo 13
1.1.1 Lifecycle like used for planning the modules 13
1.1.2 Lifecycle analysis 14
1.1.3 Logging 14
1.14 Security 14
1.1.5 Databasedesign, 14
1.1.6 Plans related to the database for the future 18
1.2 OpenCA::DBI and OpenCA:DBIS 18
1.2.1 History e 18
1.2.2 Basicdesignideas 18
1.2.3 Which code in which module? 19
1.2.4 Open for the future 19
2 Internal documentation 21
2.1 OpenCA:DBI. 21
211 wsage ... 21
212 wusedpackages 21
2.1.3 Configuration and creation of object by new () 21
2.1.4 Datastructures and variables 25
2.1.5 Public functions 25
2.1.6 Unchanged public functions (from OpenCA::DB v0.8.7a) 29
2.1.7 Private functionso oL 29
2.1.8 Has to be implemented (") 31
2.1.9 Old unchanged private functions (from OpenCA::DB v0.8.7a): 31
2.1.10 Supported databases 31
2.1.11 How to add another databasevendor? 32
2.1.12 How to add another attribute? 33
2.1.13 Authors of the software 34
2.1.14 LICENSE 34

4 CONTENTS

2.1.15 PS. EXAMPLE, 35

2.2 OpenCA:DBIS 35

2.2.1 Used packages 35

2.2.2 Datastructures and variables 36

2.2.3 Public functions 37

2.2.4 Privatefunctions 39

225 dbis 40

226 dbisctl 40

3 Configuration 41

3.1 DBILconf. e 41

IIT OpenCA::Sync 43
IV OpenCA::ACL, ROLE and RBAC (not implemented

yet!!!) 47

4 Design 51

4.1 Basicideas e e e e e 51

4.1.1 What weneed? 51

41.2 Designideas 52

4.2 Databasetables 53

4.3 Functionality 54

5 Internal documentation 55

5.1 Usedpackages. i i 55

5.2 Datastructures and variables 55

5.3 ACL e 57

54 ROLE e 57

55 RBAC e 57

5.5.1 Public functions 57

5.6 Private functions 58

6 Configuration 61

V Apendices 63

7 Glossar 65

8 Standardsoftware used by OpenCA 67

9 About the authors 69

9.1 MichaelBell 69

CONTENTS

10 Contact

71

CONTENTS

Part 1

Introduction

Have somebody the time to write a small essay?

10

Part 11

OpenCA::DBI and DBIS

11

Chapter 1

Design of OpenCA::DBI and

DBIS

1.1 Databasedesign

1.1.1 Lifecycle like used for planning the modules

Before we start to design the databases it is a good idea to make an image which

shows the lifecycle of a certificate.

REQUESTS

CERTI

FICATES

(p
CA

/

/\

CRL

\ CRR

13

14 CHAPTER 1. DESIGN OF OPENCA::DBI AND DBIS

1.1.2 Lifecycle analysis

The lifecycle show us that there are four major objects in a certificate’s lifecycle:
1. Request

2. Certificate

3. CRR

4. CRL

Not every certificate must be revoked and so the most certificates will never be
part of a CRR or a CRL but we should take about every possibility. So in the
database we have to store a minimum of four instances of objects.

1.1.3 Logging

Systems which should provide security must have very improved logging to
support a very deterministic behaviour. If we have any problems like deleted
requests, revoked certificates which are never published on a CRL we want to
follow the trace of actions.

1.1.4 Security

In this case security is the security of the logs. Requests, certificates, CRRs and
CRLs protect themselves by signing. The logs are not protected so timestamps
can be manipulated some logs can be removed. there are a lot of things which
can happen. So I have to sign the logs that nobody can manipulate old entries.
If anyone cracks my database and remove all the stuff before time 1234 then I
can do nothing only regular backups help.

1.1.5 Databasedesign

The basic database consists of six tables.
1. request

2. certificate

3. crr

4. crl

5. log

6. signature

I never use any plurals. Plurals can only be misinterpreted. So I take the basic
type to give the tables their names and this is the object’s name. The structures
of the tables are the followings:

1.1. DATABASEDESIGN

request

| name | datatype |
REQUEST SERIAL | TEXT PRIMARYKEY
ROLE TEXT
DATA TEXT
FORMAT VARCHARS32
INFO TEXT
DN TEXT
CN TEXT
EMAIL TEXT
RA TEXT
RAO TEXT
STATUS SMALLINT (a bug?)

certificate

| name | datatype |
CERTIFICATE SERIAL | BIGINT PRIMARYKEY
ROLE TEXT
FORMAT VARCHAR32

DATA TEXT
INFO TEXT
DN TEXT
CN TEXT
EMAIL TEXT

STATUS SMALLINT (a bug?)

ca certificate

| name | datatype |
CA_CERTIFICATE SERIAL | TEXT PRIMARYKEY
ROLE TEXT
FORMAT VARCHAR32

DATA TEXT
INFO TEXT
DN TEXT
CN TEXT
EMAIL TEXT

STATUS SMALLINT (a bug?)

15

16 CHAPTER 1. DESIGN OF OPENCA::DBI AND DBIS

Crr

| name | datatype |
CRR_SERIAL TEXT PRIMARYKEY
ROLE TEXT
CERTIFICATE SERIAL BIGINT
DATE DATETIME
FORMAT VARCHAR32
DATA TEXT
INFO TEXT
DN TEXT
CN TEXT
EMAIL TEXT
RA TEXT
RAO TEXT
STATUS SMALLINT (a bug?)
REASON TEXT
crl
| name | datatype |
CRL_SERIAL DATETIME PRIMARYKEY
ROLE TEXT
STATUS SMALLINT (a bug?)
FORMAT VARCHAR32
DATA TEXT
LAST UPDATE DATETIME
NEXT UPDATE DATETIME
CRL_SERIAL SERIAL
DATATYPE TEXT (evtl. redundant with FORMAT)
INFO TEXT

1.1. DATABASEDESIGN 17
log
| name datatype
ACTION NUMBER SEQUENCE
MODULETYPE SMALLINT
MODULE TEXT
SUBMIT DATE DATETIME
DO_DATE DATETIME
ACTION BIGINT
CERTIFICATE SERIAL BIGINT
REQUEST SERIAL, CRR_SERIAL TEXT
CA CERTIFICATE SERIAL
CRR_SERIAL, DATE DATETIME
ROLE ROLE
FORMAT VARCHAR32
DATA TEXT
INFO TEXT
DN TEXT
CN TEXT
EMAIL TEXT
RA TEXT
RAO TEXT
LAST UPDATE DATETIME
NEXT UPDATE DATETIME

DATATYPE TEXT (evtl. redundant with FORMAT)
STATUS SMALLINT (a bug?)
REASON TEXT
signature
| name | datatype |
ACTION NUMBER BIGINT PRIMARYKEY
CERTIFICATE SERIAL BIGINT
DATE DATETIME
DATA TEXT
INFO TEXT

Attention - if you are looking into your database you will not find these
columnnames directly because in the module itself every name has a extra
databasename. This was done to provide a fast change of the hole database
if there are problems with a special database. So for example I use key as name
for the serial of requests, CA-certificates and CRRs but MySQL doesn’t like the
word key as variablename so I change the name to mykey.

18 CHAPTER 1. DESIGN OF OPENCA::DBI AND DBIS

Another nasty detail is actually that I unify the unique identificatiers. This
means all unique integer identifiers (CRLs and certificates) are named serial
and all hashes are named key (ok now mykey ;-)).

The datatypes are not real datatypes the show you the meaning and we have
special settings for every different databasevendor. For example: PostgreSQL
can have sometimes problems with ISO-date so the datatype DATETIME is in
real text for PostgreSQL.

1.1.6 Plans related to the database for the future

The most important projects in the future are OpenCA::SYNC and the design
of a RBAC-concept. The concept is explained in the RBAC-section too (Part
v).

1.2 OpenCA::DBI and OpenCA::DBIS

1.2.1 History

Originally OpenCA::DBI was developed to support the OpenCA project with
an interface to RDBMSs which should be compatible with OpenCA::DB. During
the development the need for logsigning will be integrated into OpenCA::DBI
and I made the decision to build a second module DBI Services.

The OpenCA::DBIS software includes all highlevel functionality which are
needed to use a RDBMS. This includes backup, logsigning, datamerging be-
fore signing, calculating the “anchors” for a logentry and all of the verification
mechanisms. Actually only signing is implemented. There are no concepts to-
day to implement backup and verification. These are with the RBAC- and
SYNC-modules the most wanted features which we need to reach the level of
commercial systems.

1.2.2 Basic designideas

First a small overview how the design was planned. This show the way of
the objects! So the scripts access of cause the OpenCA::DBI module but the
passed data is for example a CRR-object. Another thing is that some other
modules like RBAC uses functions of OpenCA::DBIS too (e.g. the function
getMergedData). The RBAC for example can use the signing daemon on the
CA to give the admins at the CA a little bit more comfort. They have only to
enter the passphrase one times (at start of the CA)

1.2. OPENCA::DBI AND OPENCA::DBIS 19

RBAC EEEEERERN CRR

1.2.3 Which code in which module?

The basic idea is to put all functions which operate directly on the database to
the OpenCA::DBI module and all functions which implements special features
are put to OpenCA::DBIS. therefore the S means Services. So if you want to
use a highlevelfunction like the daemon which handle the signing you have to
look into the interfacedocumentation of OpenCA::DBIS.

1.2.4 Open for the future

The modules especially the DBI-module are so open as possible. Which means
they mainly object oriented - not in the meaning of programming but in the
meaning of the processed data. So you give the module an object and the mod-
ule stores the object in the correct databasetable. So it should be no problem
to integrate the new RBAC-objects. The entries which are needed for databas-
esynchronisation are today there (it’s only the DO DATE - the signature of
the log will be automatically overwritten).

20

CHAPTER 1. DESIGN OF OPENCA::DBI AND DBIS

Chapter 2

Internal documentation

2.1

OpenCA::DBI

2.1.1 usage

$new object = new OpenCA::DBI (optionl => $valuel, ...);

All names are case sensitive !!!

2.1.2 used packages

OpenCA::REQ
OpenCA::X509
OpenCA::CRL
OpenCA::CRR
OpenCA::OpenSSL
OpenCA::Tools
DBI
OpenCA::DBIS

2.1.3 Configuration and creation of object by new ()

This is perhaps the most complicated part for the users of this module. You
configure and init a new object of the class OpenCA::DBI by calling the function

new.

The often used remote and local means remote database and local database.
Actually OpenCA does not have a sync-module so the use of a local database
insteed of the central remote database makes absolut no sense. The code for

21

22

the documented options is written but deactivated by enforced special settings

of the options.

CHAPTER 2. INTERNAL DOCUMENTATION

ALL VARIABLES ARE CASESENSITIVE !!!
The usage of sub new is:

SHELL => $object object of class OpenCA::OpenSSL

mode => mode name

The following modes are available

mode write access read access
standard backup | standard backup
ultra-secure remote - remote -
secure remote - remote local
standard remote - local -
progressive | remote local local -
agressive local - local -

Because the synchronization doing module of OpenCA is not implemented
so "ultra-secure" is enforced. Attention the code is implemented for this feature
so if take the code and remove the line

$self->{mode} = "ultra-secure";

,the described mechanisms work.

failsafe => (on|off)

If failsafe is on and a remote action fails a failover by using the local database
is encouraged. If mode is "ultra-secure” this option will be ignored.

Actually failsafe is ever set to "off". (Code is written and works - so you can
activate this feature.)

second chance => (yes|no)

If no backup is set due to the settings of mode and failsafe a "yes” enforce a
second try on the standarddatabase. A failed read during the first run don’t
effect a failing write during the second run so a third run will be performed.

Actually "no" is enforced but manually you can made this option working.
The enforced "no" is only there for better testing (definite setting at every
time).

logsecurity => integer value

The default setting is 0. You can set integer value higher than -1 (so >=0).

2.1. OPENCA::DBI 23

logperformance => integer value

The default setting is 8. You can set integer value higher than 7 (so >=8).

So this is the time to write something about the signing code. Actually the
code is placed in OpenCA::DBI but in future it moves to OpenCA::DBIS which
stands for DBI Services - so it includes all high level functionality.

The log signing algorithm create signature from the following logrecords:

-> actual

-> actual - 2¥*Q

-> actual - 2*%*1

->

-> actual - 2**k (last value with result >= 0)

1. Now the records 0..(logperformance-1) are ignored.

2. The records logperformance..t are removed until k-t equals logsecurity. If
logsecurity equals 0 then the second operation is not performed and all
records are signed.

logperformance is an option which protects us against the possibilities of systems
which has a high system load factor. logsecurity defines the used references.

remoteType => Pg
DBI type of the database

remoteName => database name

Be warned this string is a must for every databasesystem! Several databases
does not need the setting of host or port because the information is stored in an
interfaces file like on Sybase. So the "database_name" is the string needed by
the databasedrivers of the different vendors. For more information please the
the documentation of the DBD::vendor name drivers (e.g. Informix, Interbase,
mSQL, MySQL, Oracle, Pg, Sybase)

remoteHost —=> hostname

This is the host where the database is located - so remote has only a logical
meaning. Actually until you use no VPN-software it is strongly recommended
that the database is on your local machine. The use of DNS is not necessary
and not recommended because the use of pure IP protects you against DNS
spoofing. Alternatively you can insert the used hostname in your /etc/hosts

THE VALUES OF MODE,
FAILSAFE AND SEC-
OND _CHANCE ARE NOT

CASE SENSITIVE.

24 CHAPTER 2. INTERNAL DOCUMENTATION

remotePort => port number
remoteUser => user
remotePasswd => passwd
localType => Pg

localName =>> database name
localHost => hostname
localPort => port number
localUser => user

localPasswd —=> passwd
DEBUG => true_value

If you enter nothing then there is nothing. If you enter a value which perl
interprets as true then debugging is on.

CERT_FILE => cert.pem This is for logging only. The cert is used for
signing. Please see CONFIGURATION - new () for more information about
the algorithm.

KEY _ FILE => priv.key This is for logging only. The key is used for
signing. Please see CONFIGURATION - new () for more information about
the algorithm.

PASSWD => passwd This is for logging only. The passphrase is used for
signing. Please see CONFIGURATION - new () for more information about
the algorithm.

Last a small comment to the code which do the signing. Because this code is
a highlevel feature I will move this in the future to the OpenCA::DBIS module
so not be shocked if you are looking into the code and don’t find the code. If
the code moved you will find a notice about the version were the move starts
here.

Version: 0.1.4.14

2.1. OPENCA::DBI 25

2.1.4 Datastructures and variables

| variable | content
$OpenCA::DBI::SQL all sql stuff
$OpenCA::DBI::SQL->{TABLE} all tables
$OpenCA::DBI::SQL->{VARIABLE} all variables 0] (as array with type [1])
$OpenCA::DBI::SQL->{TABLE STRUCTURE} | array with columnnames of tables
$OpenCA::DBI::ACTION actioncodes for logging
$OpenCA::DBI::STATUS status of a object
$O0penCA::DBI::MODULETYPES ra, ca, public ...
$OpenCA::DBI::ERROR all errorcodes
$OpenCA::DBI::DB contains all vendorspecific configuration
$OpenCA::DBI::DB->{Pg} PostgreSQL
$OpenCA::DBI::DB->{Pg}->{TYPE} types
$OpenCA::DBI::DB->{Pg}->{DBI_OPTION} options for DBI->connect
$OpenCA::DBI::DB->{Pg}->{SEQUENCE} stuff for sequence generators
$OpenCA::DBI::VERSION versionnumber

The variables which are bind to the object itself are all named like above
described in 2.1.3.

2.1.5 Public functions

The supported public functions are:

new - see CONFIGURATION -new ()

Please see the description of the configuration of OpenCA::DBI which describe
the "new" function.

initDB

This function initializes the databases. It knows the following options:

DB => @databases You can pass an array which can include "remote",
"local" or "remote" and "local". If nothing is included then the value is set to
"remote". The databases will then initialized.

This means the function tries to do all the sql-create commands which are
needed for operation of the OpenCA::DBI and OpenCA::DBIS modules.

These tables are:

request certificate crr crl log signature

MODE => (NONE|FORCE|FORCE _LOCAL|FORCE_REMOTE|FORCE_ ALL)
If successful then the function returns a 0. If not successfull then -1 is re-

turned. Please read this section carefully because I perhaps switch to return-

value 1 for success. Comments are welcome.

26 CHAPTER 2. INTERNAL DOCUMENTATION

operateTable
DO=> (exist|drop|creat]|init)

DB => $dsn this is $self->{remoteDB} or $self->{localDB}
TYPE => $db_ type
TABLE —=> $table Sequencegenerators are handled extra!

storeltem

DATATYPE => (old type|basic_type) The old_types which are ac-
cepted are the same like in the OpenCA::DB module. These are strings like
PENDING REQUEST or REVOKED CERTIFICATE.

The basic_type means you can enter normal basic types like:

e REQUEST
e CERTIFICATE
e CRR
e CRL

If you use basic types and you not set the option "status" status is setting to
"VALID". If you use old _types then the status will be extracted from the string
via the private function getStatus.

STATUS => (VALID RENEWED|UPDATED |PENDING|APPROVED|
SUSPENDED|REVOKED |DELETED|ARCHIVED|EXPIRED|) The
status can be any of the above terms. If status is not seeded I use first the
DATATYPE if it is an old _type and if not not then the status is "VALID".

INFORM => (PEM|DER|SPKAC]|) This option is actually a little bit
unclear because I get the data via objects so I don’t need the format because I
get the data directly from the object. If the format is not detectable I have an
internal variable defStoredFormat which define this format.

Résumé: this is waste!

OBJECT => $openca_object This is an OpenCA object which has
to be stored. This could be OpenCA:REQ OpenCA:: X509 OpenCA::CRR
OpenCA::CRL

MODULETYPE => (CA|PKIManager|RA|WebGateway|) This for
logging only. If you set it you can read the log in the database and can verify via
OpenCA::DBL::MODULETYPE->{number from db} the moduletype which
has done this action.

2.1. OPENCA::DBI 27

MODULE => module name This is for logging only. If you set it you
can read the log in the database and can verify which module has done this
action (it is stored as ascii so it is humanreadable - means you can read it as
databaseadmin).

getltem

DATATYPE => (old _type|basic_type) The old_types which are ac-
cepted are the same like in the OpenCA::DB module. These are strings like
PENDING _REQUEST or REVOKED CERTIFICATE.

The basic__type means you can enter normal basic types like:

e REQUEST
o CERTIFICATE
e CRR
e CRL

If you use basic types and you not set the option "status" status is setting to
"VALID". If you use old _types then the status will be extracted from the string
via the private function getStatus.

STATUS => (VALID| RENEWED|UPDATED|PENDING|APPROVED)|
SUSPENDED|REVOKED|DELETED|ARCHIVED|EXPIRED|) The
status can be any of the above terms. If status is not seeded I use first the
DATATYPE if it is an old_type and if not then the status is ignored.

KEY => key This is the key (the unique identifier) of this special requested
object. So this can be a serial number or a md5 etc..

If KEY is not given then I return the last element. This feature is useful
for CRLs and only actually allowed for CRLs!!! If you search the latest one you
have only to call:

$openca_ dbi->getltem (DATATYPE => "CRL");

I think this is a good feature.

If you need this feature for other objects you must uncomment the following

line in getItem:
return if ((not $serial) && ($table ne "CRL"));

MODE => (RAW]|) RAW causes the return of the plain text of stored
data. Nothing causes the return of an object.

getNextItem

The same options like getItem except MODE which is not supported. An object
will be returned at every time. The function determines only the next key
itself and then passes the request to the function getItem. The option KEY is
required.

28 CHAPTER 2. INTERNAL DOCUMENTATION

getPrevlitem

The same options like getItem except MODE which is not supported. An object
will be returned at every time. The function determines only the next key
itself and then passes the request to the function getItem. The option KEY is
required.

destroyltem
DATATYPE => (old _style|basic_type)

KEY => key destroyltem really delete the request from the database. At-
tention this function is reserved for a fututre recovery algorithm! therefore the
operation will not be logged!

So please "hands off" if you not very shure what you are doing!!!

Use deleteltem (which do nothing ;-)) or better (best)

storeltem (DATATYPE= xyz, MODE=>"UPDATE", STATUS=>"DELETED",
OBJECT=>xyz);

deleteltem

This is a dummy to be proof against old codeparts which think they must
remove the object from VALID CERTIFICATE after they store the certificate
to REVOKED CERTIFICATE.

elements

DATATYPE => (old_type|basic_type) The old_types which are ac-
cepted are the same like in the OpenCA::DB module. These are strings like
PENDING REQUEST or REVOKED CERTIFICATE.

The basic__type means you can enter normal basic types like:

e REQUEST
e CERTIFICATE
e CRR
e CRL

If you use basic types and you not set the option "status" the function returns
the number of all elements of this table.

STATUS => (VALID RENEWED|UPDATED |PENDING|APPROVED)|
SUSPENDED|REVOKED |DELETED|ARCHIVED |EXPIRED|) If
not used the scan performs on the hole table.

This function counts the elements which are in the same table and have the
same status (if status is set via STATUS or DATATYPE).

2.1. OPENCA::DBI 29

searchItem

The options are the well known options DATATYPE, MODE and STATUS
(please see above).

The new options are all possible searchattributes. To get them please use
the new function getAttributes! The old functions support some types not.
The function getAttribute don’t return the unique identifiers, but you can get
the unique identifiers of the tables via OpenCA::DBI:SQL- >{VARIABLE}-
>{tablename." SERIAL"}[0] (Attention - the tablename is stored in big let-
ters!)

getTimeString
This function returns an ISO-timestring (2001-01-14 18:24:06).

2.1.6 Unchanged public functions (from OpenCA::DB v0.8.7a)

Trows

Same options like searchItem. The function calls searchItem and count the
returned objects. Simple but errorproof

Working but unclear status (private or public???) (directly taken from
OpenCA::DB v0.8.7a)

listItem

This function is directly taken over from OpenCA::DB v0.8.7a. Because I don’t
know for what it is used I don’t change and use it.

The following unsupported functions are not supported because they per-
form operations which are not necessary or possible for RDBMSs (Relational
DataBase Management Systems). These systems take care by themselves on
things like number of elements, locks, next and preview operators etc..

2.1.7 Private functions

The “new” private functions are:

getSearchAttributes

The only argument is the tablename via getAttributes ("REQUEST"); The re-
turned value is an array with the available attributes. Take in mind that the
unique identifiers will not be returned but they are available via OpenCA::DBI::SQL-
>{VARIABLE}->{CERTIFICATE _SERIAL}[0] for example.

getTable

It extract from a datatype (old or new) the tableand return it.

30 CHAPTER 2. INTERNAL DOCUMENTATION

getStatus

It extracts from STATUS and DATATYPE the status. If STATUS is present
DATATYPE will be ignored.

getSequence

This function has the job to return a new ACTION NUMBER for the table
log. This is done by a function to keep the vendordependent code away from
the not vendordependent code. Sequences, sequence generators etc. are not
standardized. The option is a db_hash _write called hash. Pleae see doConnect
for a detailed description of this code.

doConnect, doQuery, doRollback, doCommit, doDisconnect
All of these function get an hash as option. The hash is structured like follows:

my %db_hash read = (STATUS => 0,
ERRORS => 0,
DBH => 0,
STH => ||,
TYPE => "
MODE —> "READ",
QUERY => ""
BIND VALUES => [);

STATUS is the errorstate of the read and write connections. Please never
touch this value it is absolut internal highly critical.

ERRORS include all errors which are happened during the use of this hash. If
you want to use write and read connections you can merge the errors be-
tween the hashes via $db_hash read{ERRORS} |= $other{ERRORS};
If you now return with return $db_hash read{ERRORS} because do-
Connect has failed finally all database realted errors are detectable. All
errors are available via $openca_dbi_object::ERROR- >{error_name}.
Actually T think I have a problem because the |= operator does not the
same thing like in C or I have some overflows.

DBH is the actual used databasehandle from DBI->connect.

STH is an array with all statementhandles of the actual DBH. The handle for
the last doQuery is available via $hash{STH}[scalar (@{$hash{STH}})
-1]. Actually I don’t use other than the last result of a statement but
somewhere in the future ...

TYPE the DBD:driver - e.g. Pg, Informix, Oracle

MODE set the mode of the databaseoperation and so I can determine the used
database which is defined via the function new (MODE=">"ultrasecure"

)

2.1. OPENCA::DBI 31

QUERY this is the actual query which you have only to set for doQuery.

BIND VALUES this is the actual array of binded values which you have
only to set for doQuery.

2.1.8 Has to be implemented (!!!)

These functions are not absolut necessary because Massimiliano Pala explains
me that der is uuencoded and PEM is nothing else then DER in txt-format.
txt2der

der2txt

The last two functions require a bidirectional equivalent transformation from
binary data into text. This is necessary to store DER-formated data. I try
something but it is not correct.

2.1.9 Old unchanged private functions (from OpenCA::DB
v0.8.7a):

getBaseType
listItems (not used)
byKey (not used)
hash2txt

txt2hash

2.1.10 Supported databases

Every subscribed item has the same behaviour for remoteXYZ and localXYZ.

PostgreSQL
| option | default | required |

remoteType Pg yes

remoteName - yes

remoteHost localhost no

remotePort 5432 no

remoteUser - yes

remotePasswd - yes

If you would not set the remoteUser then DBD::Pg would use the username
of the processowner. Because this is special for the Pg-driver this feature is
not supported or used by the OpenCA ::DBI-module and cause an undef return
value for the new () call.

32 CHAPTER 2. INTERNAL DOCUMENTATION

MySQL

Attention the name which you must enter is mysql!!!

| option | default | required |
remoteType mysql yes
remoteName - yes
remoteHost localhost no
remotePort ? no
remoteUser - yes
remotePasswd - yes

Because I have not the time to test MySQL please write any mistake in this
documentation suddenly to me. I don’t know the standard MySQL-Port so I
hope the DBD::mysql module knows it ;-)

ATTENTION - MYSQL AND MSQL DON’T SUPPORT TRANSAC-
TIONS, SO PLEASE USE THEM ONLY FOR TESTING. THE OPENC::DBI
MODULE WORKS ONLY CORRECT WITH RDBMSS WHICH FULLY SUP-
PORT TRANSACTIONS. THE OPENCA::DB-MODULE IS PREPARED
TO HANDLE THE PROBLEM OF NONEXISTING ACID-FEATURES BE-
CAUSE IT USES DBM-FILES. IF YOU WANT TO USE AN OPENSOURCE-
DATABASE WITH OPENCA PLEASE TAKE POSTGRESQL OR ANY OTHER
TRANSACTIONSUPPORTING RDBMSs. (WHAT 1S WITH INTERBASE
- ISN’T THIS THE FREE BORLANDTM DB 7)

2.1.11 How to add another databasevendor?
The variable OpenCA::DBI::DB

First you have to edit the section where $OpenCA::DBI::DB is defined. Make
a copy from the §OpenCA::DBI::DB=>{Pg} part and then start edit it.

TYPE The first problem is the date. I try to store a ISO-date so you have to
decide whether your database can handle ISO-format or you choose better
a type like "text".

DBI_OPTION this is the string which I give to DBI->connect

SEQUNCE This is a little bit difficult. This part is used to support sequence-
generators. So there are two different ways.

1. If the sequencegenerator is implemented via auto _increment or a row
where you can directly enter a value from a sequencegenerator like
in PostgreSQL this is the right way to read.

e CREATE - here you have to enter the sql-string which can create
the the generator if this is explicitly necessary like in PostgreSQL
and not in MySQL.

e INIT - some generators need an initial command for startup.

2.1. OPENCA::DBI 33

e GENERATE - here you enter the code with which you fill the row
of the generator (see the examples of PostrgeSQL and MySQL)

e GENERATE BY INSERT =1 - in case 1.
e DROP - the sql-command to delete the generator if this is ex-
plicitly necessary (e.g. Oracle)

2. If the sequence generator must be eplicitly asked for a value then this
is the correct way.
e CREATE - see 1.
e INIT - see 1.
e GENERATE - nothing
¢ GENERATE BY INSERT =0
e DROP - see 1.

The function getSequence

1. (cont.) here you must enter the code to get the value from the row which
you have inserted with the GENERATE command. The value must be
returned via return $number;

2. (cont.) here you have to enter the code to get the next number from your
sequencegenerator.

The sub new ()

Please look for the comment

After this comment you find a section where the dsn of DBI (attention not
OpenCA::DBI) for the DBD-driver will be configured. This is very easy. So
have a look to PostgreSQL and MySQL and do it then.

You don’t want to do this job?

No problem. Mail a message to me with a short comment which database do
you need. Then I try to make it available.

MySQL was implemented one day after it was requested - so sometimes we
are very fast ;-D

Michael Bell <michael.bell@web.de>

2.1.12 How to add another attribute?

1. Check in $OpenCA::DBI::SQL->{VARIABLE} for the existence of such
an attribute. If it is still missing then add it.

2. Add the attribute to the table in the array $OpenCA::DBL:SQL->{TABLE STRUCTURE}
but take in mind that the first entry is the primary key.

34 CHAPTER 2. INTERNAL DOCUMENTATION

3. Add the attribute to the table “LOG” in the array $OpenCA::DBI::SQL-
>{TABLE_STRUCTURE}->{LOG} but take in mind that the first entry
is the primary key and especially here reserved for the sequencegenerator.

4. Add the attriubte to the list in getSearchAttributes.

So now the attriubte should be added. I think that’s easy enough now ;-D

2.1.13 Authors of the software

e Massimiliano Pala <madwolf@openca.org> (c) 1997-2000, All Rights re-
served.

e Michael Bell <michael.bell@web.de> (c¢) 2000-2001, All Rights reserved.

2.1.14 LICENSE

GNU Public License version 2. The parts are used from Massimiliano Pala’s
OpenCA::DB have a special license so please see OpenCA::DB for more infor-
mation.

2.2. OPENCA:DBIS 35

2.1.15 P.S. EXAMPLE

Block: {
doConnect
if doConnect returns negative
then last BLOCK (final error, all options failsafe,
backup or second_chance did not help - best
thing is now to say return -1; insteed of
last BLOCK;)
doQuery until the first returncode is -1
then doRollback doDisconnect
if never doQery fails then doCommit
if returnvalue is -1
then doRollback doDisconnect else doDisconnect
if somethig fails except doConnect '"next BLOCK"

}

you can repeat this block so often as you want until the first time doConnect
returns <0. So long this not happens you can try to get a successful transaction.

2.2 OpenCA:DBIS

2.2.1 Used packages
e OpenCA::REQ

OpenCA::X509

OpenCA::CRL

OpenCA::CRR

OpenCA::OpenSSL

36 CHAPTER 2. INTERNAL DOCUMENTATION

OpenCA::Tools

e DBI

English (for nice names like $UID and $GID)

POSIX (the setuid command is used but senseless because it only works
for Perl v5.61 or higher)

IPC::SysV

IPC::SysV qw (IPC_RMID IPC_ CREAT)

2.2.2 Datastructures and variables

Before I start with the table I want to notice here that the GLOBAL variables
store mostly default values. The values which are accessible via $self->... are
the actual values.

Global variables

| variable | content
$OpenCA ::DBIS::VERSION versionnumber
$OpenCA::DBIS:ERROR errorcodes
$OpenCA::DBIS::MESSAGEKEY the key for the messagequeue

(default: 673622324)

$OpenCA::DBIS::MESSAGELENGTH the messagelength (unsused actual)
(default: 256)

$OpenCA::DBIS:LOGSECURITY 0 (OpenCA::DBI for documentation)

$OpenCA::DBIS:LOGPERFORMANCE | 8 (OpenCA::DBI for documentation)

2.2. OPENCA:DBIS

Object’s variables

| variable | content
backend undef
CERT_FILE undef
KEY FILE undef
PASSWD undef
MESSAGEKEY $OpenCA::DBIS::MESSAGEKEY
MESSAGELENGTH | $OpenCA::DBIS:MESSAGELENGTH
PIDFILE " /var/run/openca_signing_daemon.pid"
LOGFILE " /var/log/openca_signing daemon.log"
IPC_USER undef
IPC_GROUP undef
IPC_UID undef
IPC_GID undef
tools undef (unused)
DEBUG 0

2.2.3 Public functions

new

calls $self->init

startSigningDaemon

1. calls $self->init

37

2. try to set uid and gid to the given IPC_UID and IPC_GID which are
from IPC_USER and IPC_GROUP (this code works actually not on
many machines because of a heavy bug in the POSIX package of perl
which is only fixed for perl >=v5.61)

3. check for certificate and private key

4. try to get messagequeue

5. fork-parent

(a) check access and existence of logfile

(b) write pidfile

6. fork-child (endless loop)

(a) get message from queue

(b) fork-parent

38 CHAPTER 2. INTERNAL DOCUMENTATION

i. begin the loop again

(c) fork-child
i. read from tmpfifoln given by message all needed data
ii. call $self->getData

i. call $self->getSigndata
iv. send message via answer_ fifo taken from message

=

i

The daemon can handle errors during fork which means the signature is created
by the parentprocess itself. The daemon logs every such problem because this
can only happen if the computer has a too high load. The throughput is slowing
down if this takes in place because the fifo limits the throughput which is a I/O-
bottleneck!

stopSigningDaemon

This function calls only $self->init and then kills the daemon and removes the
mesaagequeue. The messagequeue is removed to prevent a new daemon from
trying to answer old request which are no longer existent. This would cause
several hanging processes. So perhaps we have to change startSigningDaemon
in the way to use IPC_EXCL or IPC_ CREAT | IPC_ TRUNC to completely
avoid such problems.

getSignature

This is the function which contact the daemon. The function ignores any per-
haps existent object and wants to get all option by iself. therefore it doesn’t use
sub init. You can send the following arguments:

e CERT FILE
e KEY_ FILE
e PASSWD
SHELL

MESSAGEKEY

¢ MESSAGELENGTH
o DATA
¢ DEBUG

If you send CERT FILE and KEY FILE the function doesn’t use the daemon.
The function use the daemon only if no certificate or private key are given. The
functions implements the complete functionlaity for IPC by itself (means the
function doesn’t use their private functions for this).

2.2. OPENCA:DBIS 39

getMergedData

merge the data from a transmitted hashreference (for use with the statemen-
thandles - $STH->fetchrow hashref). The function exists to provide all other
functions which need to store a signature with an algorithm tho merge data in
a secure manner to verify later the stored signatures.

getSignatureAnchor
calculate from a given position and given logsecurity and logperformance (de-
scribed in OpenCA::DBI) all other entries in the table which should be used to
build a secure signature and protect the database from removing some entries
in the middle of the tables (actually only used to protect the table log).
2.2.4 Private functions
getSigndata
sign the transmitted data with transmitted certificate and privatekey
init
reads and interprets all arguments
e MESSAGEKEY
e MESSAGELENGTH
e CERT FILE
¢ KEY FILE
e PASSWD
e SHELL
¢ IPC_USER
e IPC_GROUP
e PIDFILE
e LOGFILE

doLog

write the transmitted message to the logfile with date. In the case of problems
with the logfile the message is written to STDOUT.

debug

print the transmitted message and the complete configuration of the object.

40 CHAPTER 2. INTERNAL DOCUMENTATION

getData

read the answer fifo and the data which should be signed from the given fifo

2.2.5 dbis

This is the script which should be placed in the runlevel sections (/etc/init.d,
rc? ...). You can configure all important variables of the signing daemon in
the script. The script exports the variable and call dbisctl for startup. Used
language is bash.

Because actually the setuid-command of the POSIX-class from Perl doesn’t
work (only >=5.61) I recommend to use this script not during the bootup
(sudo - $IPC_USER is not implemented yet. Perhaps I do this later to fix the
problems with perl. It is a bad style to store a passphrase in a startupscript. I
think we better do startup via a cgi-script which uses dbisctl or include it.)

2.2.6 dbisctl

The script is written in Perl and uses the given variables in the environment.
The script is thought for use with dbis.

Chapter 3

Configuration

3.1 DBI.conf

This file configures OpenCA::DBI and OpenCA::DBIS.

messagekey this is the key which is used to get the id of the messagequeue
messagelength unused (perhaps later limits the length of messages)
cert_file from OpenCA::DBIS

key file from OpenCA::DBIS

passwd from OpenCA::DBIS

remoteType

remoteName

remoteHost

remotePort

remoteUser

remotePasswd

localType

localName

localHost

localPort

localUser

localPasswd

41

42 CHAPTER 3. CONFIGURATION

DEBUG
pidfile
logfile

The user and group are not specified because DBI.conf is only for use with cgi-
scripts and the user and group of the webserver are the exactly right ones for
the signing daemon.

ATTENTION PLEASE DON’T USE THE VARIABLES WHICH BEGIN
WITH LOCAL BECAUSE THESE ARE ONLY USABLE IF OPENCA:SYNC
WAS IMPLEMENTED. THIS IS ACTUALLY NOT HAPPEN.

Part 111

OpenCA::Sync

43

somewhere in a far future ...

45

46

Part 1V

OpenCA::ACL, ROLE and
RBAC (not implemented
yet!!!)

47

ATTENTION - COMPLETELY
OUTDATED !!!

49

50

Chapter 4

Design

4.1 Basic ideas

4.1.1 What we need?

The most important problem what we actually have is the accesscontrol. We
only can devide into CA, RA, RA-Admin and Others (meaning: the public
webserver). So we can only devide into functional modules but anyone who can
use the module can use the hole functionality of the module (because today
the RA-Admin and RA are implemented in the same script every RAO who
knows the internal commands of OpenCA can use the functionality of the RA-
Admin). So we need a strong mechanism to manage the access to the system
and validate operations. On big systems I want only to say to the CA "every
webserverrequest which was approved by the webadminstrators can be processed
to a certificate". This is done by all good commercial systems via RBAC-models.
There are several different ways to implement and interpret such models but
what we need?

So to answer this question I have to summarize shortly what is needed to
perform an operation:

1. an object like OpenCA::xyz
2. the status of the object
the role which will be affected

the operation which will be performed

ook @

the role which try to perform this operation

So the next question is how to determine a role? The role of an object is very
easy to determine because any object in the system relate to a DN and every
DN is like the name implies distinguished. The only extra role is a crl because
the owner of a CRL is the CA so we have to declare a special role CA but this

51

52 CHAPTER 4. DESIGN

is not a problem. The problem is to implement in every object the information
about the role into the header.

For systems which has to guarantee nearly absolute security (ok this is never
possible) we have to know only positive accessrights which means I don’t have
to store deny-rules only allow-rules exist - what is not allowed that is forbidden.

4.1.2 Designideas

So the main question is how looks a query which awaits as answer deny or allow?

So the input data is:

datatype

o key

dn of performer

e operation

What do we know from the input data?
datatype

e type of object

e status of object

key

e role of the object via getItem with dataype too

dn of performer
o certificate’s validity

e role of performer

operation

e operation

Conclusion

So this looks like a very easy structure and yes it is not so difficult. I think we
need basically three things:

1. an extension of our certificates to cleanly include the role (please not over
the ou!)

4.2. DATABASETABLES 53

2. a place for all roles

3. a place for the ACL(s)
So there are two possible ways to implement the roles and ACLs.

1. store all roles in a table to verify the existence of the role and store the
ACL of a role in a seperate table for each role

2. store all roles and ACLs in one table

The decision which variant I want to take is not made because of performance.
The existence of a table per role requires the right to create tables on the
database. The operations are normally performed via a webpage with a cgi-
script on the backend. Some databases allow the command “create table” only
for superusers but I think it’s not so good to hardcode a superuserpassphrase.

If you cannot accept that you as an owner of a highend database like DB2
or Oracle have to take care about problems with the accesscontrol of smaller
databases be cool the second variant is faster because I can determine the right
by one SQL-query to one table. So the possibility to have this table in the
databasecache is very high (especially for databases with good cachealgorithms
because this special table is accessed every time if a operation should be per-
formed).

A small comment to the signature of a role. Every role and every accessright
must be signed by the CA indiviually which means that the CA must sign every
row of the table. It is theoretically possible to perform the signing about the
hole ACL but then I need very long to verify a right because I must get all
rights from the database.

If you find here any failure please contact the OpenCA group because this
is very critical for the security of the hole system.

4.2 Databasetables

There is only one additional table:

| name | datatype
RBAC_SERIAL BIGINT
ROLE TEXT
RIGHT TEXT
OBJECT TEXT
STATUS SMALLINT (a bug?)
OWNER (affected role) TEXT
OPERATION (future status) | SMALLINT
FORMAT VARCHAR32
DATA (signature) TEXT
INFO (only for compatibility) | TEXT

54 CHAPTER 4. DESIGN

ATTENTION - there should be a row for every role inside the table where
RIGHT, OBJECT, OWNER and OPERATION are empty (STATUS includes
the status of the role - never delete a role completely via OpenCA ::DBI->destroyltem
to protect the integrity of the log!!!). We should store there a signature about
the hole role to detect attacks where a right will be removed but not by the CA
and there we can check the existence of a role which has no right (e.g. User).
The signature of such a role is only performed about the single entry of this
role. (I think it is not problematically if a hacker removes a right. The sys-
tem can only be more secure in this way or the attack is very early recognized
so actually I sign only the row itself to provide better performance and easier
implementation.)

4.3 Functionality

Chapter 5

Internal documentation

5.1 Used packages

OpenCA::DBI

OpenCA::DBIS

OpenCA::OpenSSL

OpenCA::DBI and DBIS are a problem

5.2 Datastructures and variables

This is the most important section of the internal documentation. There are
three big points which we have to support:

1. OpenCA::RBAC must be an object which I can handle with OpenCA::DBI

2. OpenCA::ROLE must be able to load a complete role

3. OpenCA::RBAC, ROLE and ACL must include the functionality to im-
port and export the hole RBAC-model

So we must support the follwing structure:

55

56 CHAPTER 5. INTERNAL DOCUMENTATION

OpenCA::ACL
OpenCA::ROLE OpenCA::ROLE
OpenCA::RBAC OpenCA::RBAC OpenCA::RBAC

OpenCA::RBAC OpenCA::RBAC

So I can handle any of the needed three types of OpenCA::RBAC.
STATUS and OPERATION are both from the same source $OpenCA::DBI::STATUS{CODEWORDI!
So the combination of STATUS and OPERATION give us the ordinary oper-
ation (e.g. VALID (STATUS) to REVOKED (OPERATION) on a CERTIFI-
CATE (OBJECT) of RAO (OWNER) is the revocation of RAO-certificate).
The allowed status are:

e VALID

e RENEWED
e UPDATED

e PENDING

¢ APPROVED
e SUSPENDED
e REVOKED

¢ DELETED

e ARCHIVED
¢ EXPIRED

e EXIST

5.3. ACL 57

5.3 ACL
5.4 ROLE
5.5 RBAC

5.5.1 Public functions
new

All not commented options are taken directly from the databasetable

import

export

sign

done via getMergedData and getSignature from OpenCA::DBIS

create

initializes a new object of the given type (by mode)

store

changes all transmitted value

delete
delete the object from the database

load

removed because this functionality is done via getItem ;-D

getParsed
returns $self->{RIGHT. The parsing itself is done by init

getAccess

This function is the normally used one to test the existence of a right. You can
enter:

e dn (transformed to role)
e type of object (used for table)

e serial/key of the object

58 CHAPTER 5. INTERNAL DOCUMENTATION

1. T check the existence and state of the certificate matching the dn via
getltem.

2. I do a getltem to check for the existence or status of the object.

3. I do a call searchItem via db-interface to find a matching right(attention:
wildcardattacks —> before this operation you must verify the certificate
of the user!).

5.6 Private functions

init

ITEM => $txtitem

This is only for the OpenCA::DB or OpenCA::DBI modules. This forces OpenCA::RBAC
to ignore all other options go into mode RIGHT and start interpreting the TX-
TITEM

RBAC_SERIAL

ROLE

If you set this variable and you set mode to ROLE then all roleobjects are
loaded. If you don’t set DB then this is an error an returns undefined!
RIGHT

OBJECT

STATUS

OWNER

OPERATION

FORMAT

DATA

INFO

DB —> $databaseobject

You can choose between OpenCA::DB and OpenCA::DBI.

DAEMON => (ON|OFF|YES|NO|)

default is OFF, not necessary - unused

DEBUG => true_value

5.6. PRIVATE FUNCTIONS

generatelD
debug

59

60

CHAPTER 5. INTERNAL DOCUMENTATION

Chapter 6

Configuration

You have only to set the switchs RBAC to (yes/nofon/off) in all conf-files of the
modules.

61

62

CHAPTER 6. CONFIGURATION

Part V

Apendices

63

Chapter 7

Glossar

ACL

CA

CRL

CRR

DBI

DER
OpenCA::ACL
OpenCA::DB
OpenCA::DBI
OpenCA::DBIS
OpenCA::RBAC
OpenCA::ROLE
OpenCA:SYNC
PEM

PKI

Public

RA

RAServer

RAO

RBAC

RDBMS

SQL

AccessControlList
Certification Authority
Certificate Revocation List
Certificate Revocation Request
databaseinterface of Perl
binary format for PKI-files

text format for PKI-files

Public Key Infrastructure

the name of the webgateway of OpenCA
Registration Authority

the server which the RA(O)s use

RA Operator (works in the RA)
RoleBasedAccessControl
RelationalDataBaseManagementSystem
Structured Query Language

65

66

CHAPTER 7. GLOSSAR

Chapter 8

Standardsoftware used by
OpenCA

67

68

CHAPTER 8. STANDARDSOFTWARE USED BY OPENCA

Chapter 9

About the authors

This chapter is mainly there to give you an overview about who has written a
part so that you contact the right one if you need help or you think the author
need it ;-D

9.1 Michael Bell
e OpenCA::DBI
e OpenCA::DBIS

69

70

CHAPTER 9. ABOUT THE AUTHORS

Chapter 10

Contact

If you find anything what is not correct or you have written some documentation
which should be included please contact the authors of the module or one of the

projectmanagers or writers.

71

